A chitosan–dipotassium orthophosphate hydrogel for the delivery of Doxorubicin in the treatment of osteosarcoma

Hang T. Ta, Crispin R. Dass, Ian Larson, Peter F.M. Choong, Dave E. Dunstan

A chitosan–dipotassium orthophosphate hydrogel for the delivery of Doxorubicin in the treatment of osteosarcoma

Hang T. Ta, Crispin R. Dass, Ian Larson, Peter F.M. Choong, Dave E. Dunstan

Department of Chemical and Biomolecular Engineering, University of Melbourne, VIC 3010, Australia
Departments of Orthopaedics and Surgery, St Vincent’s Hospital Melbourne, Melbourne, VIC 3065, Australia
Monash Institute of Pharmaceutical Sciences, Monash University, VIC 3052, Australia
Sarcoma Service, Peter MacCallum Cancer Centre, VIC 3002, Australia

Article info
Article history:
Received 30 January 2009
Accepted 13 March 2009
Available online 5 April 2009

Keywords:
Chitosan
Orthophosphate
Drug delivery
Hydrogel
Osteosarcoma
Cancer

Abstract
The current management of primary osteosarcoma (OS) and its secondary metastasis is limited by the lack of an efficient drug delivery system. Here we report an in situ gelling chitosan/dipotassium orthophosphate hydrogel system designed to directly deliver the frontline chemotherapeutic agent (Doxorubicin) in a sustained time period to tumor sites. A significant reduction of both primary and secondary OS in a clinically relevant orthotopic model was measured when doxorubicin was administered with the hydrogel. This hydrogel delivery system also reduced cardiac and dermal toxicity of Doxorubicin in mice. The results obtained from this study demonstrate the potential application of a biodegradable hydrogel technology as an anti-cancer drug delivery system for successful chemotherapy.

1. Introduction
Osteosarcoma (OS) is the most common type of malignant bone cancer, and the sixth most common type of cancer in children and young adults [1,2]. It also represents the second highest cause of cancer-related death in this age group [3]. OS begins in bones, frequently localizes in the distal femur and proximal tibia region, and usually metastasizes to the lungs or other bones. The overall survival rate of patients was 10% before the 1970s when treatment was mainly limb amputation [1]. The rate dramatically increased to approximately 60–70% once multi-agent chemotherapy followed by surgery has been introduced [4]. Currently, chemotherapy drugs are administered both before and after surgery. Despite significant effort in the field, no major changes in treatment and outcome have been achieved.

Contemporary chemotherapy for OS is normally the combination of different chemotherapeutic agents administered intravenously or orally [5,6]. However, most chemotherapeutics also carry the risk of both short-term and long-term toxic effects. Doxorubicin (Dox) for example, can cause nausea, vomiting, heart and skin complications. When the cumulative dose of Dox reaches 700 mg/m², the risks of developing cardiac side-effects dramatically increase [7]. Due to its high toxicity and hence narrow therapeutic index, increasing systemic dose to achieve desirable high concentration of drug at the tumor site is difficult. In addition, the concentration of systemically-administered drug at the bony cancerous site is likely to be very low because the bone is only a moderately-perfused organ [8]. It has been reported that only 0.52 µg of Dox accumulated in 1 g marrow after an intravenous administration of 30 mg/m² of Dox [9]. Therefore, a localized and targeted drug delivery system (DDS) is essential to overcome these problems in the treatment of OS.

Most of the studied Dox DDSs such as liposomes [10,11], microspheres [12], polymeric micelles [13,14] and conjugates [15] are usually administered intravenously, limiting the dosage for treatment of OS. Magnetic liposomes [16] and hydroxyapatite implants [17] have been developed and tested successfully in in vivo models of OS. However, these DDSs require the surgical insertion of magnets and implants at treatment sites, which reduces the comfort and convenience to patients. In this study, we developed a biodegradable and non-cytotoxic in situ gelling chitosan/dipotassium orthophosphate (Chi/DPO) hydrogel DDS for delivery of Dox in OS treatment. Different Chi/DPO formulations were characterized and the optimal formulation was selected. A clinically relevant orthotopic mice model of OS [3] was employed for the in vivo study.
Sigma–Aldrich, Australia. The human SaOS-2 OS cell line attained from the American Type Culture Collection (ATCC) was cultured in α-MEM (Invitrogen, Australia) supplemented with 10% fetal calf serum (FCS, Invitrogen, giving complete medium, CM) in a humidified 5% CO2 atmosphere. Cells were used within 20 passages. A seeding cell population of exponentially-growing cells greater than 95% viability was maintained at 37°C and shaking at 100 rpm.

2. Materials and methods

2.1. Materials

Low molecular weight chitosan was obtained from Fluka BioChemika (Switzerland). Dipotassium phosphate (K₂HPO₄, DPO) and acetic acid (CH₃COOH) were purchased from Ajax Finechem (Australia). Doxorubicin was obtained from Sigma–Aldrich, Australia. Glass coverslips (Sigma–Aldrich) (22 mm × 22 mm) were immersed in 70% ethanol for 5 min and then were put into a 6-well plate. The plate was unclosed and left in the biohood until all ethanol was evaporated. 2 μl of Chi/DPO–Dox was pipetted into each well of the plate. The plate was incubated at 37°C for 15 min to allow the gelation of this formulation. Subsequently, 2 ml of medium containing 100,000 cells was pipetted into each well. After 1 day of incubation at 37°C/5% CO₂, cell viability in each well was measured using the Cell Titer Blue (CTB) (Promega, Melbourne, Australia) assay according to manufacturer instructions. The results were recorded using absorbance measurement with BioRad Model 680 Microplate Reader. The readings were taken at 570 nm with 600 nm as a reference wavelength.

2.2. Preparation of hydrogel solution

Low Mw chitosan solutions were prepared by dissolving chitosan flakes in 0.1 M acetic acid overnight at room temperature under constant stirring. The resulting solutions were then filtered through 100 μm pore sized filters and stored under refrigeration, at 4°C for further analysis. Subsequently, 900 μl of the resultant Chi/DPO solution containing Dox was pipetted into a 6-well plate. The plate was incubated at 37°C for 30 min to allow the gelation of this formulation. Subsequently, 2 ml of medium containing 100,000 cells was pipetted into each well. After 1 day of incubation at 37°C/5% CO₂, the glass coverslips were processed using the DeadEnd™ Colorimetric TUNEL system (Promega, Australia).

2.3. Rheology analysis

Rheological measurements were performed using a Carri-Med CSL² 100 controlled stress rheometer with cone (4 cm diameter, 1.59° angle) and plate geometry. The temperature of the plate (0–100°C) was controlled by a Peltier unit. For all measurements, approximately 1 ml of each freshly prepared sample was introduced onto the plate at 18°C. Evaporation of sample was prevented by using a solvent trap in conjunction with silicon oil sealing. All the measurements were performed in oscillation mode at a fixed frequency of 1 Hz and a strain of 1%, which is well within the measured linear viscoelastic region. The temperature evolution of G′ and G″ moduli were measured with change in temperature at a rate of 1°C/min. The time evolution of G′ and G″ were measured at constant temperature of 37°C. The gelation temperature and the gelation time were equivalent in value [19–21].

2.4. In vitro release study

Appropriate amounts of doxorubicin were added to chitosan solutions and mixed thoroughly. After being kept cold at 4°C, the resultant chitosan–Dox solution was mixed manually with an appropriate amount of cold DPO solution (4°C) until homogeneous. Five different Chi/DPO–Dox formulations were prepared as detailed in Table 1.

20 μl of the resultant Chi/DPO solution containing Dox was pipetted into a 1.5 ml eppendorf tube which was incubated at 37°C for 1 h at which temperature the solution gelled. The formed gels occupied the bottom of the tubes and exposed to the release buffer with the same surface area (∼196 mm²), 1 ml of PBS pH 7.4 (Sigma, Australia) was pipetted into each tube. Controls included tubes containing blank hydrogel. The tubes were then placed in a shaking incubator (Ratek, Australia) maintained at 37°C and shaking at 100 rpm.

At predetermined time intervals, 900 μl of the release buffer was sampled and stored at −20°C for further analysis. Subsequently, 900 μl of fresh buffer was added to the tubes in order to maintain the constant volume of the release medium. The amount of Dox released from the hydrogel formulations was measured using Cary Fluorescence Spectrophotometer (Varian, Australia) with excitation wavelength at 490 nm and emission wavelength at 593 nm. Briefly, a standard curve with fluorescence intensity plotted vs. Dox concentration was prepared and the amount of Dox released was determined based on this curve. The percentage cumulative release was calculated based on the total Dox content.

2.5. Proliferation/viability assay

2 μl of Chi/DPO3–Dox was pipetted into a 6-well plate. The plate was incubated at 37°C for 15 min 2 ml of medium containing cells was pipetted into each well at 20,000, 40,000, 60,000, 80,000, and 100,000 cells/well. After 2 days of incubation at 37°C/5% CO₂, cell viability in each well was measured using the Cell Titer Blue (CTB) (Promega, Melbourne, Australia) assay according to manufacturer instructions. The results were recorded using absorbance measurement with BioRad Model 680 Microplate Reader. The readings were taken at 570 nm with 600 nm as a reference wavelength.

2.6. Apoptosis assay

Glass coverslips (Sigma–Aldrich) (22 mm × 22 mm) were immersed in 70% ethanol for 5 min and then were put into a 6-well plate. The plate was unclosed and left in the biohood until all ethanol was evaporated. 2 μl of Chi/DPO3–Dox was pipetted into each well of the plate. The plate was incubated at 37°C for 15 min to allow the gelation of this formulation. Subsequently, 2 ml of medium containing 100,000 cells was pipetted into each well. After 1 day of incubation at 37°C/5% CO₂, the glass coverslips were processed using the DeadEnd™ Colorimetric TUNEL system (Promega, Australia).

2.7. In vivo efficacy study

Mice were anaesthetised with ketamine (100 mg/kg) and xylazine (10 mg/kg). 10 μl of 50% matrigel containing 20,000 of SaOS-2 cells was intrathecally injected into each mouse as described previously [3,18,22]. 3 weeks later, mice were randomized into 11 groups with 5 mice per group and administered treatments. Details of these treatment groups are summarized in Table 2. Mice were monitored 3 times a week. At the termination of the study (12 days later), tumors were measured using digital calipers and mice legs were X-rayed [23]. Mice were sacrificed and heart, lungs, tumor, skin, and limbs were removed and fixed in 4% paraformaldehyde. After rinsing with PBS, number of lung macrometastases was counted. All tissues were embedded in paraffin for histological analysis.

2.8. Histology

The limbs were decalcified and all tissues were embedded in paraffin for histological analysis according to standard conditions [24]. All tissues were sectioned at 4 μm and stained with hematoxylin and eosin as before. Sections were observed with a Nikon Eclipse TE2000-U microscope (Nikon, Australia) and photographed with SPOT Advanced software (SciTec, USA).

Table 1

<table>
<thead>
<tr>
<th>Chi/DPO formulations for Dox delivery.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation</td>
</tr>
<tr>
<td>Formulation</td>
</tr>
<tr>
<td>Chi/DPO1–Dox</td>
</tr>
<tr>
<td>Chi/DPO2–Dox</td>
</tr>
<tr>
<td>Chi/DPO3–Dox</td>
</tr>
<tr>
<td>Chi/DPO4–Dox</td>
</tr>
<tr>
<td>Chi/DPO5–Dox</td>
</tr>
</tbody>
</table>

* a Doxorubicin stock solution was 25 mg/ml. Final concentration of Dox in formulations is 2.5 mg/ml Chi/DPO.
2.9. Statistical analysis

Data were analyzed for statistical significance using Student's t-test (2-tailed). A P-value < 0.05 was considered significant.

3. Results

3.1. Characterization of Chi/DPO solutions

Five different Chi/DPO formulations were characterized and tested in an in vitro release study to figure out a suitable formulation for delivering Dox. They were prepared by varying chitosan concentration, orthophosphate concentration and drug loading parameters (Table 1).

Rheological characterization of these five formulations was performed to define their gelation temperatures, gelation time at both room temperature (20 °C) and physiological temperature (37 °C), and the gel strength at 37 °C. The pH of each formulation was also determined. The results are summarized in Table 3.

The in vitro release of the active ingredient Dox from these five formulations was studied over a period of 19 days. It was found that Chi/DPO hydrogels released Dox in a sustained manner over this period (Fig. 1A). Details of the initial burst effect, the gelation rate and the cumulative release percentage after 19 days for each formulation are summarized in Table 4.

Based on the pH, the gelation temperature, the gelation time at room temperature and at 37 °C, the initial burst and the in vitro release rate, Chi/DPO3 emerged as the suitable system for delivering Dox. To avoid complication, the pH of Chi/DPO needs to be around physiological pH (7.4). Furthermore, the Chi/DPO solution should gel in a reasonable time. The system must remain liquid to allow injection and must gel rapidly enough to prevent abundant drug leaking from an incompletely-formed hydrogel. In addition, the hydrogel matrix should release drugs or active therapeutic agents in a sustained manner with a low initial burst effect. Although Chi/DPO1 and Chi/DPO3 produced the same initial burst effect and Chi/DPO1 was more stable than Chi/DPO3 at room temperature, Chi/DPO3 was selected due to its relatively quicker release rate during linear phase (Table 4) and its easier syringeability.

The effect of Dox loading on its release pattern was also investigated by comparing release profiles of Chi/DPO3 formulations containing 2.5 and 0.5 mg Dox/ml hydrogel solution. The formulation with higher load exhibited a lower initial burst effect and slower release rate in terms of percentage (Fig. 1B). However, in terms of mass amount, it produced a higher initial burst (7 mg vs. 3 mg) within 1 day and a greater release rate (197 ng/day vs. 68 ng/day during linear stage) (Fig. 1C). These results complied with Fick's...
diffusion that the driving force of diffusion is generated by the concentration gradient [25]. As the loading increased, the concentration gradient increased, thus dm or m (mass amount of Dox diffused or released) increased. The higher-loaded Chi/DPO3 formulation was used for the later experiments (discussed later).

The in vitro release of Chi/DPO3–Dox in PBS buffer containing lysozyme was also performed and is presented in Fig. 1D. In the presence of the enzyme, the initial burst was slightly affected and increased to 17.83 ± 1.05% (approximately 2% higher than the initial burst in the absence of lysozyme). However, the release rate after the initial burst was 1.182 ± 0.312%/day which is nearly 6-fold higher than the rate in the absence of lysozyme (0.205 ± 0.068%/day). These results indicate the more sustained release of Dox from Chi/DPO3 in the buffer containing lysozyme due to the degradation of the hydrogel matrix.

3.2. Therapeutic activities of Dox released from Chi/DPO3 hydrogel

SaOS-2, a human OS cell line, was employed to investigate the in vitro activities of both Dox released from Chi/DPO3 hydrogel matrix. We found that Chi/DPO3–Dox dramatically inhibited the proliferation of SaOS-2 cells (Fig. 2). Apoptosis, the major cause of cell death, was significantly enhanced in the presence of Chi/DPO3–Dox (Fig. 3), which helps to define the mechanism behind the decreased proliferation of SaOS-2 cells. Apoptosis was about 5-fold higher when Dox was incorporated into the chitosan hydrogel. These findings demonstrate the release of Dox from

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Release characteristics of Chi/DPO–Dox formulations in PBS (pH 7.2).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulation</td>
<td>Initial burst release after 1 day (%)</td>
</tr>
<tr>
<td>Chi/DPO1–Dox</td>
<td>15.55 ± 0.22</td>
</tr>
<tr>
<td>Chi/DPO2–Dox</td>
<td>18.91 ± 1.08</td>
</tr>
<tr>
<td>Chi/DPO3–Dox</td>
<td>15.99 ± 0.46</td>
</tr>
<tr>
<td>Chi/DPO4–Dox</td>
<td>18.61 ± 0.45</td>
</tr>
<tr>
<td>Chi/DPO5–Dox</td>
<td>27.49 ± 0.14</td>
</tr>
</tbody>
</table>

Fig. 2. Proliferation assay. (A) Proliferation assay results graph. (B) Images of SaOS-2 cell proliferation after 2 days of incubation. 2 μl of Chi/DPO3 or Chi/DPO3–Dox (2.5 mg Dox/ml Chi/DPO3) was used per well. Brown spherical shapes are blocks of hydrogels in wells.
Chi/DPO3 to cells and demonstrated the preserved toxicity of the released Dox.

3.3 In vivo efficacy study

3.3.1 In vivo inhibition of primary tumor growth

Fig. 4 reveals the ability of Chi/DPO3–Dox to inhibit primary tumor growth at the tibia site. Chi/DPO3–Dox reduced the tumor volumes by approximately 50% compared to untreated (control) groups (Fig. 4A and C). Histological analysis of tumor tissues demonstrated that Chi/DPO3–Dox induced the highest level of cell apoptosis (37%) while free Dox and Chi/DPO3 induced less than 15% apoptosis (Fig. 4B and D). X-ray images revealed a reduction of bone degradation (osteolysis) in the groups of Chi/DPO3–Dox (Fig. 4A and C). Histological examination of tumor tissues of dissected lungs also revealed smaller metastases in the Chi/DPO3–Dox group (Fig. 5B).

3.3.2 In vivo inhibition of secondary tumor growth

In addition to the activity of Chi/DPO3–Dox at the primary tumor site, its activity at the secondary tumor site was also observed. The number of pulmonary (lung) metastases decreased by approximately 1.5-fold in the Chi/DPO3–Dox group (Fig. 5A), as compared to those in the other groups. Histological examination of dissected lungs also revealed smaller metastases in the Chi/DPO3–Dox group (Fig. 5B).

3.3.3 Reduced systemic side-effects of Dox released from Chi/DPO3 hydrogel

We found that controlled and sustained release of Dox via Chi/DPO3 considerably reduced its side-effects in mice including cardiotoxicity (Fig. 6A) and skin toxicity (Fig. 6B). Histology of heart sections showed cytoplasmic vacuolization (Fig. 6A3) and vascular dilation (Fig. 6A4) in the Dox group while normal morphology of cardiac myocytes was observed in control (Fig. 6A1) and Chi/DPO3–Dox (Fig. 6A2) groups. Similarly, mice treated with free Dox exhibited epidermal necrosis (Fig. 6B4) and vacuolization (Fig. 6B5 and B6) while the morphology of skin from Chi/DPO3–Dox group was not perturbed (Fig. 6B3), and similar to the samples from control (Fig. 6B1) and Chi/DPO3 (Fig. 6B2) groups.

4. Discussion

In the previous study, we have demonstrated the thermo-sensitive, pH-dependent, and sustained releasing properties of Chi/DPO hydrogels which are liquid at low or room temperature but gel at body temperature (37 °C) [26]. In this study, various Chi/DPO formulations were prepared and characterized to determine the suitable formulation for the release of Dox, a frontline chemotherapeutic agent. Due to different combinations, various gelation properties were recorded for these formulations. All of them had gelation temperature above room temperature, ranging from 22 to 30.3 °C. At room temperature, they started the gelation process after 1–7.1 min. All of them gelled immediately at 37 °C. The G’ of these hydrogels varied from 258.7 Pa to 2701 Pa. Their pH values ranged from 7.20 to 7.54 which are within the acceptable pH range for injectable pharmaceutical products.

Chi/DPO1 appeared as the weakest hydrogel but it was the most stable formulation at room temperature, demonstrated by its longest gelation time at this temperature (7.1 min). Chi/DPO4 produced the strongest hydrogel but it started to gel at relatively low temperature, 22 °C which was very close to room temperature. It was also the least stable formulation at room temperature since it remained in liquid state for only 1 min. Chi/DPO2, Chi/DPO3, and Chi/DPO5 exhibited rheological properties acceptable for injectable drug delivery system.

The effect of Dox on the gelation behavior of Chi/DPO was also investigated. Dox was found to slightly influence the gelation temperature and gelation time of the Chi/DPO solutions (data not shown). Generally in the presence of Dox, Chi/DPO gelled at a lower temperature and their gelation time was a bit shorter.

The release of Dox was controlled and governed by the hydrogel combinations. Interestingly, the release patterns of Dox from Chi/DPO formulations were not influenced by chitosan concentration and the hydrogel strength. They were factors affecting the release of proteins entrapped in Chi/DPO hydrogels as presented in our previous study [26]. The amount of orthophosphate salt in formulations was the key factor significantly influencing Dox release profiles, especially the initial burst effect. After 1 day of study, Chi/DPO5, the formulation containing the smallest amount of salt, released the highest percentage of entrapped Dox (27.5%) despite its high gel strength (1238 Pa) compared to other formulations. Although Chi/DPO2 and Chi/DPO4 had different chitosan concentrations (2.5% and 2.9%) and their gel strength exhibited a large gap (549.3 and 2701 Pa), they produced the same release patterns with equal initial burst effects (29% after 1 day). This might be due to the same amount of salt present in these formulations. Similarly, despite the different compositions and the rheological properties of Chi/DPO1 and Chi/DPO3, these hydrogels released Dox in the same patterns. Within 1 day of the experiment, approximately 19% of the loaded Dox diffused out of these gel matrices. These formulations also had relatively equivalent amounts of salt.

These results can be explained by the morphology of Chi/DPO hydrogels. We found that the larger outer pores were formed in the formulations containing less orthophosphate (data not shown), which could lead to the higher initial burst release of small molecules such as Dox (Mw: 578 Da) from these formulations. It was noted that after the initial burst in day 1, the cumulative release percentages of Dox from five formulations did not differ much from each other (around 8.5–10.5%). It indicated that the composition of
Chi/DPO hydrogel did not dramatically affect the release pattern of small molecules during linear phase. However, the amount of salt contributed in the hydrogel significantly influenced the initial burst effect. Therefore, by varying the salt amount, the degree of the burst release of small molecules could be adjusted.

The release profile of Dox from Chi/DPO3 hydrogels was also affected by the load of Dox in the formulations. It was found that the higher-loaded formulation (2.5 mg/ml) showed a higher initial burst and a greater release rate during linear stage (in terms of mass amount). In BALB/c mice, the LD50 (the drug doses that results in death of one-half of the tested animals) value for Dox administered intraperitoneal injection was 20.6 mg Dox/kg body weight [27]. Therefore, in the in vivo efficacy study, a dose of 5 mg Dox/kg mouse body weight was chosen to treat mice. Since each mouse had average weight of 20 g, it needed a total of 100 µg Dox. Although the initial burst of the formulation containing 2.5 mg/ml Chi/DPO3 was higher, it was within the acceptable limit. On the other hand, this formulation provided more sustained release of Dox, compared to the lower-loaded formulation (Fig. 1C). In addition, higher load can reduce the volume of Chi/DPO solution injected, leading to better patience compliance. Therefore, the higher-loaded formulation was selected for later experiments.

Fig. 4. Inhibitory effect of Chi/DPO3–Dox on in vivo tumor growth in mice after 12 days post-treatment. (A) Tumor growth inhibition graph. *P < 0.05 vs. control group. (B) Tumor apoptosis graph. *P < 0.05 vs. control group. (C) Primary tumors, showing significantly large tumors in samples from control, Chi/DPO3 and Dox groups, but nearly nil tumors in sample from Chi/DPO3–Dox group. (D) TUNEL-stained apoptotic tumor tissues, showing much less apoptotic cells (dark brown) in tumor tissues from control, Chi/DPO3 and Dox groups, compared to tumor tissue from Chi/DPO3–Dox group (magnification ×40). (E) X-ray images, indicating severe bone lysis in samples from control, Chi/DPO3 and Dox groups and only mild osteolysis observed in sample from Chi/DPO3–Dox group. (F) Histological analysis of tumor growth, showing that tumor cells severely degraded bone cortex and invaded bone marrow in samples from control, Chi/DPO3 and Dox groups, with less bone degradation in sample from Chi/DPO3–Dox group (BM: bone marrow, C: cortex) (magnification ×200).
It was noticed that after the initial burst, the release rate of Dox was slow and seemed to reach plateau within a short time frame. It may raise doubts on the sustained release property of Chi/DPO hydrogels. However, in in vivo conditions, it is expected that the release rate of the entrapped agents would be higher due to the degradation of the chitosan network caused by various enzymes and macrophages present in the body. To prove it, lysozyme was added to the release media at a concentration of 8 mg/ml (similar to the enzyme concentration found in human serum [28]). Chitosan is known to be degraded or metabolized in vivo by certain enzymes, especially lysozyme through the hydrolysis of the acetylated residues [29]. The rate of this degradation inversely depends on the degree of acetylation and crystallinity of the polymer. As expected, in the presence of the enzyme, the initial burst increased by approximately 2% and the release rate after the initial burst increased by 6 times. In addition, the release was well sustained over the period of 19 days. These results confirm the ability of Chi/DPO hydrogels in controlling and sustaining the release of Dox.

The viability of SaOS-2 cells in the presence of Chi/DPO3–Dox is presented in Fig. 2A in comparison with the cell viability in culture containing blank Chi/DPO3 or free Dox. Different numbers of cells were employed. It was found that Chi/DPO3 did not cause any significant effect on the viability of SaOS-2 cells, indicating the biocompatibility of this hydrogel formulation. It appeared that free Dox had more potent activity than Chi/DPO3–Dox, especially in the presence of a higher number of cells. These results can be explained by a sustained release property of Dox from Chi/DPO3 hydrogel matrix.

Dox belongs to the anthracyclines antibiotics, and its anti-tumor activity is related to the ability of binding DNA and inhibition of nucleic acid synthesis, leading to the apoptosis of tumor cells [30]. Apoptosis is a form of programmed cell death in multicellular organisms [31,32], which involves a series of biochemical events leading to a variety of morphological changes and death of cells [33,34]. As can be seen in Fig. 3, Chi/DPO3–Dox induced approximately 85% of total cells to be apoptotic while Chi/DPO3 did not. It again demonstrated the biocompatibility of Chi/DPO3 and the activity of Dox released from the hydrogel matrix.

The local delivery of Dox from the formulation injected peri-tumorally and its anti-tumor activity were demonstrated via the investigation of tumor growth. Fig. 4 reveals the ability of Chi/DPO3–Dox to inhibit primary tumor growth at the tibial site. It shows a significant difference between tumor growth in the control group and the Chi/DPO3–Dox injected group. Chi/DPO3–Dox reduced the tumor volumes by approximately 50% compared to untreated (control) group. However, the same did not hold for the Chi/DPO3-injected and free Dox-injected groups, which did not demonstrate any growth inhibition. Over the 12 days of experiment, the control tumors were 58.44 ± 14.93 mm³ in size and the free Dox-injected tumors had size at 57.36 ± 4.85 mm³ while the Chi/DPO3–Dox treated tumors were only 30.26 ± 8.74 mm³. The difference was statistically significant ($P < 0.05$) between the Chi/DPO3–Dox group and both the control and the free Dox groups. Both X-ray and histology analysis revealed lesser evidence of bone degradation (osteolysis) in the groups of Chi/DPO3–Dox. These results indicate that Chi/DPO3–Dox treatment had significantly better ability to delay tumor growth, compared to the free Dox treatment with the same Dox dose.

Chitosan is a biomaterial which has been used for bone generation [35], probably through its stimulatory effects on periodontal ligament fibroblasts and its ability to enhance type I collagen
It was found that there was no inflammatory response to the use of chitosan in vivo in both mouse and rabbit species. The results from this study also demonstrated the biocompatibility of the Chi/DPO hydrogel system in mice.

Lungs are the predominant site for OS metastasis, and in quite a number of cases, is life-threatening. Despite the aggressive treatment, 1 in 3 patients still develop pulmonary metastases, and this remains the major cause of death from this condition. SaOS-2 metastases were mostly extravascular and growing within the parenchyma and randomly in shape. In this study, the inhibition effect of Chi/DPO3–Dox on lung metastases was also investigated. The obtained results indicate that Chi/DPO3–Dox treatment had significantly better ability to delay metastasis growth, compared to the free Dox treatment with the same Dox dose.

Doxorubicin (Dox) or hydroxyldaunorubicin is a widely used chemotherapeutic drug for various cancers such as tumors of brain, breast, ovaries, lung, prostate, cervix, bladder, and bone. Dox is a 14-hydroxylated version of daunorubicin, the immediate precursor of Dox in its biosynthetic pathway. It works by interfering with the growth of rapidly growing cancer cells where it binds and intercalates into the DNA strand, thus inhibiting further DNA and RNA biosynthesis, eventually causing cell death. In spite of its potent anti-cancer activity, the nonspecific action of Dox causes serious side-effects to the patients such as heart and skin complications. It can also cause neutropenia (a decrease in white blood cells), as well as complete alopecia (hair loss). Dox side-effects remain a common clinical problem. In this study, it was found that the controlled and sustained release of Dox via Chi/DPO3 considerably reduced Dox side-effects in mice including cardiotoxicity and skin toxicity. Like many other drugs used to treat cancer, Dox is a potent vesicant that may cause extravasations and necrosis at the injection site or any site that the skin is exposed to. In this study, no necrosis was observed in mice skin at the injection site and other sites as well. These results indicate that the Chi/DPO3–Dox treatment had significantly better ability to reduce systemic side-effects, compared to the free Dox treatment with the same Dox dose.

The above results can be explained by the localized and sustained release of Dox from Chi/DPO hydrogel, leading to the prolonged and continuous direct actions of Dox on cancerous cells. Since only small amount of Dox was released at a specific time point within the local site, the possibility of Dox travelling to other organs and causing side-effects was minimized. In contrast, the conventional administration of Dox via intraperitoneal injection allowed Dox to go through every organ, thus the probability of systemic side-effects is high. Furthermore, as only a small portion of injected dose could reach the targeted tumor, it had limited inhibition effect on the growth of tumor. In addition, since it provided a sudden high amount of Dox in a short time period which then dropped quickly, there was no prolonged anti-tumor activity presented in this treatment and the need of repeated doses was crucial.
5. Conclusion

The potential application of the Chi/DPO hydrogel drug delivery system (DDS) for OS treatment has been demonstrated in a clinically relevant orthotopic and metastatic mouse model. Doxorubicin, an anti-tumor agent was successfully released from this DDS in a sustained manner with its function preserved. The incorporation of Dox in Chi/DPO not only significantly inhibited the growth of OS, osteolysis and lung metastasis, but also reduced the side-effects of Dox in mice, compared to the conventional administration of Dox. The biocompatibility of Chi/DPO system was also demonstrated through this study. These results highlight the promising application of chitosan/orthophosphate hydrogel as an effective DDS for a successful chemotherapy.

Acknowledgement

This project was supported by the University of Melbourne and St Vincent’s Hospital (Australia). We would like to thank Mr. Bruce Abaloz (Department of Zoology, the University of Melbourne) for his help with the histology analysis.

Appendix

Figures with essential colour discrimination. Parts of the majority of figures in this article are difficult to interpret in black and white. The full colour images can be found in the on-line version, at doi:10.1016/j.biomaterials.2009.03.022.

References