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g r a p h i c a l a b s t r a c t
� A mesoporous silica nanoparticle-
based responsive nanosensor is
developed for hydrogen sulphide
(H2S) detection.

� The new nanosensor can rapidly and
selectively respond to H2S and give
ratiometric luminescence signal
changes.

� Nanosensor can be internalized to
cells through plasma membrane re-
ceptors and/or microtubules-
mediated endocytosis.

� The application of nanosensor for the
detection of H2S level changes in live
cancer cells is demonstrated.
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a b s t r a c t

Gasotransmitter hydrogen sulfide (H2S), produced enzymatically in body, has important functions in
biological signaling and metabolic processes. An abnormal level of H2S expression is associated with
different diseases, therefore, development of novel bioanalytical methods for rapid and effective detection
of H2S in biological conditions is of great importance. In this work, we report the development of a new
responsive nanosensor for ratiometric luminescence detection of H2S in aqueous solution and live cells.
The nanosensor (Ru@FITC-MSN) was prepared by immobilizing a luminescent ruthenium(II) (Ru(II))
complex into a fluorescein isothiocyanate (FITC) conjugated water-dispersible mesoporous silica nano-
particle (MSN), showing dual emission bands at 520 nm (FITC) and 600 nm (Ru complex). The red
luminescence of the formed Ru@FITC-MSN was quenched in the presence of Cu2þ. The in-situ generated
RueCu@FITC-MSN responded to H2S rapidly and selectively, showing a linear ratiometric luminescence
change in FITC and Ru(II) channels with the H2S concentration (0.5e4 mM). Limit of detection (LoD) and
limit of quantification (LoQ) were determined to be 0.36 and 1.21 mM. Followed by investigation of cellular
uptake processes, the utility of the nanosensor for ratiometric imaging of H2S in live cells and its capability
to monitor H2S levels in inflammatory breast cancer cells were then demonstrated. This study provides a
powerful approach for detection of highly reactive and unstable H2S biomolecules in live systems.
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1. Introduction

Advanced early disease diagnosis and treatment monitoring
necessitate the development of new bioanalytical methods for
detection of unstable and highly reactive biomarkers [1,2]. These
biomarkers normally include reactive oxygen/nitrogen/carbon
species (ROS/RNS/RCS) and gasotransmitters, such as hydrogen
sulfide (H2S), nitric oxide (NO), sulfide dioxide (SO2) and carbon
monoxide (CO) [3e5]. Compared to ROS/RNS/RCS, gaso-
transmitters, especially H2S, are less investigated as they have been
granted as the toxic gases for biological and environmental systems
for many years [6e8]. Recent research data have revealed that H2S
is endogenously generated by three principal enzymes: cys-
tathionine-b-synthase (CBS), cystathionine-g-lyase (CSE), and 3-
mercaptopyruvate sulfurtransferase (MST) [3]. Similar to NO, this
gaseous molecule contributes significantly to various biological
processes, such as neurotransmission, vasorelaxation, and anti-
inflammation [3]. The H2S level changes in body are associated
with several diseases, such as Alzheimer’s disease, Down’s syn-
drome, diabetes, liver cirrhosis, and even cancers [8]. In particu-
larly, the H2S level is directly implicated with the inflammation of
the cancer cells, but its simple and quick determination is scarcely
reported [3].

Reliable bioanalytical methods for highly specific and sensitive
detection of H2S is key for investigation of H2S functions in bio-
logical systems [6]. Over the past few decades, several techniques
have been reported for H2S detection in bulk solution [9e14]. Of
various approaches, optical detection using H2S responsive sensors
has been recognized as one of the most promising technology due
to its inherent advantages, such as high sensitivity and simplicity,
rapidity, and efficiency [15,16]. The H2S responsive sensors are
normally designed based on different sensing mechanisms, such as
thiolysis of dinitrophenyl ether [17e21], reaction with azide
[22e31], nucleophilic addition with formaldehyde groups [32,33],
and displacement of metal ions from luminescent dyes [34e38]. By
virtue of these reactions, several sensors have been developed for
sensitive and selective H2S detection and H2S visualization in live
cells and organisms (Table S1) [26,39e42]. The majority of the re-
ported H2S sensors are designed based on the “OFF-ON” changes of
luminescent signals [6,43]. The luminescence signal is easily
interfered with the autofluorescence signal from biomolecules,
giving false-positive/negative detection. Ratiometric luminescent
sensors are desirable because the self-referenced changes of the
luminescent signals aremore reliable for H2S detection in biological
systems [2,44].

In this contribution, we report the design and synthesis of a new
responsive luminescence nanosensor for ratiometric detection of
H2S and evaluate its application in detecting H2S in inflammatory
cancer cells. As shown in Scheme 1, the mesoporous silica nano-
particle (MSN)-based sensor consists a conjugated fluorescein
isothiocyanate (FITC) as the reference signal and an embedded
ruthenium(II) (Ru(II)) complex as the H2S responsive unit. The
prepared Ru@FITC-MSN nanoparticles emit two luminescence
emission bands cantered at 520 nm (FITC) and 600 nm (Ru(II)
complex). The emission of Ru(II) complex is quenched upon addi-
tion of copper ion (Cu2þ) [45], and the in-situ formed
RueCu@FITC-MSN nanosensor turn on the emission of Ru(II)
complex upon the specific reaction with H2S in HEPES buffer so-
lution, showing the ratiometric luminescence response to H2S in
solution. The nanosensor is featured with high selectivity, sensi-
tivity and fast response to H2S detection, and good biocompati-
bility, as demonstrated in this research. The cellular internalization
processes were optimized and the uptake mechanism investigated,
followed by imaging of H2S in live breast cancer cells. Moreover,
flow cytometry analysis of endogenous H2S level changes in
inflammatory MCF-7 cells was demonstrated, providing direct ev-
idence about the H2S formation in inflammatory cancer cells.

2. Experimental section

2.1. Materials and physicochemical characterization

Ruthenium complex, [Ru(bpy)2(bpy-DPA)]2þ, was prepared and
characterized following previously reported method [46]. Fluores-
cein isothiocyanate (FITC), (3-aminopropyl)triethoxysilane
(APTES), tetraethyl orthosilicate (TEOS), 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT), lipopolysaccharide
(LPS), chloroquine, filipin, nocodazole, colchicine, ammonium
chloride, and dexamethasone were purchased from Sigma-Aldrich.
Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum
(FBS), L-glutamine, penicillin, and streptomycin sulfate were pur-
chased from Life Technologies. Unless otherwise stated, all chem-
ical materials were purchased from commercial sources and used
without further purification. All water used in experiments was
double distilled and filtered with Elga Purelab® Ultrapure Water
purification system.

The morphology and size of nanoparticles were characterized
using transmission electron microscope (TEM) (Hitachi HT 7700)
operated at an acceleration voltage of 120 kV. The samples for TEM
images were dispersed inwater and then dropped on a copper grid.
Small angle X-ray powder diffraction (SAXRD) patterns were
collected on a PAN alytical X’Pert Pro MPD X-ray diffractometer
using Cu Ka1 radiation (40 kV, 40 mA, l ¼ 0.15418 nm). The
nanoparticle zeta potential in aqueous suspension was measured
on a Nano Zeta-Sizer (Malvern instruments). Nitrogen adsorption-
desorption isotherms were measured using a TriStar II Surface Area
and Porosity analyser (Micromeritics). Fourier transform infrared
(FTIR) spectra were collected on a Nicolet iS10 spectrometer
(Thermo Fisher Scientific Inc., USA) at a resolution of 4 cm�1 for 32
scans. Thermogravimetric analysis (TGA) was conducted on a
Mettler Toledo TGA LF1600. UVeVis spectra were recorded on UV-
2401 PC spectrometer (Shimazu). Luminescence spectra were
measured on FR-5310 PC (Shimadzu) and FS 920 (Edinburgh)
spectrometers. Confocal luminescence imaging experiments were
carried out on a Leica SP8 laser-scanning microscope. The image
analysis was performed by ImageJ software version 1.44p. Flow
cytometry analysis was performed on an Accuri C6 flow cytometer
with a 488 nm laser excitation and an emission filter of 585/40 nm.
The data were analyzed with CytExpert software.

2.2. Preparation of FITC-doped mesoporous silica nanoparticles
(FITC-MSN)

Following literature report [47], FITC-APTES precursor was first
synthesized by stirring of FITC (18.7 mg) and APTES (41.58 mL) in
dimethylformamide (DMF) at room temperature in a dark room for
2 h. The stock solution of FITC-APTES was sealed and kept in dark
for further use.

To prepare FITC-MSN, triethanolamine (TEA, 0.1 mL) in 30 mL
water solution was heated to 95 �C. Cetyltrimethylammonium
chloride (CTAC, 25 wt%, 6.45 mL) was then added and the mixture
was stirred at 95 �C for 10 min before slowly addition of TEOS
(0.5 mL) and FITC-APTES (50 mL) stock solutions. Ethyl acetate
(0.5 mL) was then added into the solution, and the mixture was
further stirred at 95 �C for 1 h. After cooling down to room tem-
perature, the formed nanoparticles were collected by centrifuga-
tion (20,000 rpm) for 10 min. The nanoparticles were washed with
98% ethanol (20 mL) for three times. The FITC-MSN was then ob-
tained by washing as-prepared nanoparticles with NaCl saturated
methanol solution, and then freeze-dried for further



Scheme 1. Schematic illustration the strategy and the preparation of responsive nanosensor for H2S detection.
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characterization and ruthenium(II) complex loading.

2.3. Preparation of Ru@FITC-MSN and RueCu@FITC-MSN

As-prepared FITC-MSN (11 mg) was added into [Ru(bpy)2(bpy-
DPA)]2þ (9.76 mg) in DMF [46] and the mixture was stirred at room
temperature for 48 h. The formed Ru@FITC-MSN was collected by
centrifugation at 20,000 rpm for 10 min, and then washed with
water for three times to remove excess [Ru(bpy)2(bpy-DPA)]2þ. The
Fig. 1. Characterization of prepared nanosensor. TEM images and size distribution of FITC-
isotherms (D) of FITC-MSN and Ru@FITC-MSN.
RueCu@FITC-MSN was prepared in-situ by addition of Cu2þ to
Ru@FITC-MSN in aqueous solution. The RueCu@FITC-MSN was
then collected by centrifugation at 20,000 rpm for 10 min and
washed with water for three times. The prepared Ru@FITC-MSN
and RueCu@FITC-MSN were freeze-dried for further use.
MSN (A) and Ru@FITC-MSN (B). XRD pattern (C) and Nitrogen adsorption/desorption



Fig. 2. Ratiometric luminescence response of in-situ generated RueCu@FITC-MSN to H2S. (A) Emission spectra of Ru@FITC-MSN in the presence of Cu2þ at different concen-
trations: 0, 0.2, 0.4, 0.8, 1, 1.5, 2, 4, 6, 8, 10 mM. (B) Emission spectra of RueCu@FITC-MSN in the presence of H2S at different concentrations: 0, 0.2, 0.4, 0.8, 1, 1.5, 2, 4, 6, 8, 10 mM. (C)
Standard curve for H2S detection. (D) The recyclability of RueCu@FITC-MSN nanosensor for H2S detection. RueCu@FITC-MSN was added with 6 mM Cu2þ, and then added with
6 mM NaHS. The cycles were repeated six times. (E) Changes of RueCu@FITC-MSN emission (I600/I520) in the presence of different anions (50 mM), reactive oxygen species (ROS,
50 mM) and biomolecules (1 mM). The competitive species include: (1) blank, (2) NO3

�, (3) NO2
�, (4) F�, (5) I�, (6) Cl�, (7) S2O8

2-, (8) SO4
2-, (9) S2O5

2-, (10) S2O3
2-, (11) P2O7

4-, (12) P3O10
5-,

(13) H2PO4
�, (14) HPO4

2-, (15) CO3
2-, (16) HCO3

�, (17) AcO�, (18) MoO4
2-, (19) B4O7

2-, (20) N3
�, (21) HOCl, (22) NO, (23) �OH, (24) H2O2, (25) Cys, (26) Hcy, (27) GSH, (28) Br�, (29) PO4

3-, (30)
SO3

2-, (31) SCN�, and (32) the mixture. Data were collected at room temperature in HEPES buffer of pH 7.4. The excitation wavelength was 450 nm.
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3. Results and discussion

3.1. Physicochemical features of nanosensor

The FITC conjugated silica precursor, FITC-APTES, was first
prepared by reacting of isothiocyanate with amino group of (3-
aminopropyl)triethoxysilane (APTES) according to the method
[47]. Co-condensation of FITC-APTES and TEOS in the presence of
CTAC readily doped silica nanoparticles with FITC. Then, the FITC-
MSN was formed by further washing with NaCl saturated meth-
anol solution following a published procedure to remove CTAC [48].
As shown in Fig. S1, the FTIR spectrum of FITC-MSN shows that the
surfactant CTAC was completely removed due to the absence of the
characteristic peak of CeN stretching in 3000-2800 cm�1 [49]. The
prepared FITC-MSN was well dispersed in water with the averaged
size of 53 nm (Fig. 1A). The spherical morphology of the FITC-MSN
showed z-potential of �11.4 mV in pure water. The amount of FITC
doped was around 14 wt% by thermogravimetric analysis (TGA)
under nitrogen atmosphere (Fig. S2). As shown in Fig. 1C, the small-
angle X-ray diffraction (SAXRD) pattern of FITC-MSN displays a
typical hexagonally packed mesoporous structure. Moreover, the
nitrogen adsorption-desorption isotherm analysis suggests that the
FITC-MSN had a pore volume of 0.52 cm3 g�1 and surface area of
130.2 m2 g�1 (Fig. 1D).

The Ru@FITC-MSN was then prepared by loading [Ru(b-
py)2(bpy-DPA)]2þ into the mesoporous of FITC-MSN, followed by
washing to remove free Ru(II) complexes. The encapsulating of
[Ru(bpy)2(bpy-DPA)]2þ to the FITC-MSN is attributed to the



Fig. 3. Evaluation of cytotoxicity (A) and cellular internalization mechanism (B) of nanoparticles. (A) Viability of MCF-7 cells that incubated with different concentration of MSN (as
the control group), FITC-MSN and Ru@FITC-MSN for 24 h, respectively. (B) Flow cytometry analysis of MCF-7 cells were incubated with different cellular uptake inhibitor, and then
incubated with Ru@FITC-MSN (40 mg/mL) for 4 h (MFI, mean fluorescence intensity).
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electrostatic interaction between negatively charged FITC-MSN and
positively charged Ru(II) complexes. The TEM image of Ru@FITC-
MSN shows spherical nanostructures with a similar diameter with
FITC-MSN (Fig. 1B). The mesoporous structure was not changed, as
reflected by SAXRD pattern (Fig. 1C). The C]C stretching peak in
the FTIR spectrumwas increased after Ru(II) loading (Fig. S1). The z-
potential of Ru@FITC-MSNwas increased to 14.9 mV in pure water
due to the loading of positively charged [Ru(bpy)2(bpy-DPA)]2þ.
The [Ru(bpy)2(bpy-DPA)]2þ immobilization capacity was around
8 wt% determined by TGA (Fig. S2). The pore volume and the sur-
face area of Ru@FITC-MSN was decreased to be 0.14 cm3 g�1 and
64.5 m2 g�1, respectively (Fig. 1D). These decrements clearly indi-
cate the successful [Ru(bpy)2(bpy-DPA)]2þ loading into the meso-
porous of FITC-MSN.

The association stability of FITC and Ru(II) complex in FITC-MSN
and Ru@FITC-MSN was evaluated by measuring the changes of
absorbance at 494 nm (FITC) and 456 nm (Ru(II) complex) in pure
water, respectively. As shown in Fig. S3, more than 99% of FITC was
associated with suspended FITC-MSN and 95% of [Ru(bpy)2(bpy-
DPA)]2þ with Ru@FITC-MSN after 24 h incubation in pure water at
room temperature, indicating the good association stability of two
dye moieties in Ru@FITC-MSN in aqueous solution.
3.2. Ratiometric luminescence detection of H2S in aqueous solution

Ru@FITC-MSN clearly showed two emission bands centred at
520 nm (FITC) and at 600 nm (Ru(II) complex) (Fig. S4). The dual
emission nanoparticles allow ratiometric luminescence analysis
using FTIC as the self-referenced channel and Ru(II) complex as the
H2S responsive channel. The luminescence response of Ru@FITC-
MSN to Cu2þ was first investigated in HEPES buffer (pH 7.4). As
shown in Fig. 2A, the luminescence emission of Ru(II) complex was
remarkably quenched upon addition of Cu2þ, while the emission
change of FITC was not observed. The ratiometric luminescence
intensity (I520/I600) reached plateau after addition of 6 mM of Cu2þ

(Fig. S5). The dose dependent luminescence intensity changes (I520/
I600) displayed a good linearity in the range of 0.1e4 mM (Fig. S6),
suggesting a quantitative quenching of Ru(II) emission after
immobilized [Ru(bpy)2(bpy-DPA)]2þ binding to Cu2þ. Therefore,
the RueCu@FITC-MSN was prepared in-situ by adding Cu2þ into
Ru@FITC-MSN aqueous solution.

To investigate the ratiometric luminescence response of as-
prepared RueCu@FITC-MSN to H2S, a luminescence titration
experiment was performed by adding different concentrations of
H2S to RueCu@FITC-MSN in HEPES buffer (pH 7.4). As shown in
Fig. 2B, the luminescence emission of Ru(II) complex was gradually
increased while the emission of FITC was constant. The recovered
luminescence spectrum was similar to the one of Ru@FITC-MSN
(Fig. S4), suggesting effective displacement of Cu2þ by adding H2S to
turn on the red emission. Using unchanged FITC emission as the
reference, ratiometric luminescence response (I600/I520) of
RueCu@FITC-MSN reached plateau after addition of 6 mM of H2S
(Fig. S7). The luminescence intensity ratio (I600/I520) showed a good
linearity with the increased concentration of H2S, as can be
expressed as I600/I520 ¼ 0.36 þ 0.77 [H2S] (Fig. 2C). The detection
limit (LoD) and quantification limit (LoQ) for H2S were determined
to be 0.36 and 1.21 mM, respectively. The LoD and LoQ of
RueCu@FITC-MSN are comparable to the previously reported
method (Table S1), indicating that the H2S can be quantitatively and
sensitively detected using RueCu@FITC-MSN nanosensor in this
particular setting.

Fig. S8 illustrates the time-profile luminescence response of
Ru@FITC-MSN to Cu2þ and in-situ generated RueCu@FITC-MSN to
H2S in HEPES buffer. Upon addition of Cu2þ, the relative lumines-
cence intensity of Ru(II) complex in Ru@FITC-MSN was rapidly
decreased and the decreased luminescence intensity reached a
steady level within 3 s. The luminescence quenching is attributed to
the Cu2þ-mediated excited-state electron transfer and/or energy
transfer of Ru(II) complex [46]. The relative luminescence intensity
of Ru(II) complex was then rapidly increased upon addition of H2S,
and the maximum luminescence enhancement was observed
within 5 s. These observations indicate that in-situ generated
RueCu@FITC-MSN nanosensor can rapidly detect H2S in aqueous
solution, which is one of the key requirements for a nanosensor to
be used in detection of highly reactive biomarkers. Moreover, as
shown in Fig. 2D, changes of luminescence intensity at 600 nm can
be repeated more than 6 times upon addition of Cu2þ/H2S, indi-
cating that RueCu@FITC-MSN nanosensor is reversible for H2S
detection [50].

The luminescence ratiometric response (I600/I520) of
RueCu@FITC-MSN showed high selectivity toward H2S over other
anions, ROS, RNS and biomolecules. As shown in Fig. 2E, the
ratiometric value (I600/I520) of RueCu@FITC-MSN was not obvi-
ously changed upon addition 50 mMof various anions, ROS, RNS and
1 mM of Cys, Hcy and GSH. This is in sharp contrast to H2S at 6 mM
that specifically reduced the ratiometric value (I600/I520) from 4.5 to
0.4 without influence from other competitive species. These data
suggest that RueCu@FITC-MSN is highly selective toward H2S
detection even in the presence of other species.



Fig. 4. Luminescence imaging of H2S in live MCF-7 cells. The MCF-7 cells were incubated with Ru@FITC-MSN (40 mg/mL) for 4 h (A), and then the cells were treated with 20 mM
Cu2þ for 30 min (B), followed by further treatment with H2S for another 30 min (C). Scale bar, 50 mm.
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3.3. Detection of H2S in cells

The cytotoxicity of FITC-MSN and Ru@FITC-MSN towards breast
cancer cell (MCF-7) was first evaluated by a standard 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay. As shown in Fig. 3A, the cell viability retained above 84% after
incubating the cells at 40 mg/mL FITC-MSN and Ru@FITC-MSN for
24 h using MSN without FITC doping and Ru(II) complex immobi-
lization as the reference, suggesting a low cytotoxicity of these
nanoparticles in cell experiments at the concentration of 40 mg/mL
Fig. 5. Flow cytometry analysis of H2S generation in inflammatory cancer cells. (A) MCF-7 ce
(10 mM) for 30 min before stimulation with LPS (10 ng/mL) for 4 h. (B) MCF-7 cells were inc
30 min before stimulation with LPS (10 ng/mL) and dexamethasone (0, 1, 10, 100, 1000, an
[51].
MCF-7 cell uptake of Ru@FITC-MSN was next optimized

through varying the nanoparticle concentration and the uptake
time, with the intracellular signal expressed by means of mean
fluorescence intensity (MFI) of flow cytometry analysis. As shown
in Fig. S9, the intracellular MFI was increased upon incubation of
MCF-7 cells with the increased concentration of the Ru@FITC-MSN
(5e40 mg/mL). A very small change of MFI was obtained when at
the higher concentration of Ru@FITC-MSN (40e100 mg/mL), sug-
gesting that the optimized concentration of Ru@FITC-MSN is
lls were incubated with Ru@FITC-MSN (40 mg/mL) for 4 h, and then treated with Cu2þ

ubated with Ru@FITC-MSN (40 mg/mL) for 4 h, and then treated with Cu2þ (10 mM) for
d 10,000 mM) for 4 h.
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possibly 40 mg/mL. The MCF-7 cells were then incubated with
Ru@FITC-MSN (40 mg/mL) for 0.5, 1, 2, 4, and 8 h. As shown in
Fig. S10, the intracellular MFI was gradually increased and the
maximum MFI change was obtained after 4 h incubation, sug-
gesting that the optimized cellular uptake time is possibly 4 h.

The potential cellular internalization pathway of Ru@FITC-MSN
was further investigated following a previous method [52]. MCF-
7 cells were incubated with Ru@FITC-MSN (40 mg/mL) for 4 h at
4 �C, and the intracellular MFI was measured by flow cytometer.
Compared with the control group, the intracellular MFI of the MCF-
7 cells incubated at 4 �C was significantly decreased (Fig. 3B),
suggesting that Ru@FITC-MSN is internalized through an energy-
dependent pathway. MCF-7 cells were pre-treated with various
well-documented endocytosis inhibitor, followed by incubation
with Ru@FITC-MSN (40 mg/mL) for 4 h. Significant decrease of MFI
was not obtained when MCF-7 cells were pre-treated with filipin
and colchicine, while the MFI of both FITC and Ru(II) channel was
clearly decreased for the cells pre-treated with general endocytosis
inhibitors (chloroquine and ammonium chloride) and nocodazole,
suggesting the cellular internalization of Ru@FITC-MSN could be
dominated by cell plasma membrane receptors and/or
microtubules-mediated endocytosis.

Luminescence imaging of exogenous H2S in MCF-7 cells were
demonstrated by incubation of Ru@FITC-MSN for 4 h, followed by
sequential treatment with Cu2þ and H2S for 30 min. As shown in
Fig. 4, the intracellular green luminescence in the FTIC channel was
clearly observed and this signal was not changed during further
sequential addition of Cu2þ and H2S. Intense red emission in the
Ru(II) complex channel was also noticed for MCF-7 cells incubated
with Ru@FITC-MSN (Fig. 4A). Adding Cu2þ obviously diminished
the intracellular red emission due to the formation of
RueCu@FITC-MSN (Fig. 4B), but the red luminescence signal was
recovered upon further treatment with H2S for 30min (Fig. 4C). The
“ON-OFF-ON” response in the Ru(II) channel led to yellow-green-
yellow intracellular luminescence changes in merged images and
green-blue-green ratiometric luminescence response in the ratio
channel (R/G). Moreover, after incubation with the RueCu@FITC-
MSN, the cells showed weak luminescence in the Ru(II) complex
channel (Fig. S11). Upon addition of exogenous H2S, intracellular
red luminescence signal was remarkably increased, suggesting the
capability of intracellular H2S detection in cancer cells.

The endogenous H2S level in breast cancer cells was finally
investigated by flow cytometry analysis. Activated bacterial cell
wall component lipopolysaccharides (LPS) is a known activator that
induces an inflammatory state of cells, including MCF-7 breast
cancer cells [17,53,54], where H2S is produced by increasing CSE
expression [55,56]. Therefore, MCF-7 cells took up RueCu@FITC-
MSN for 4 h and were then treated with LPS. The intracellular
luminescence intensity was recorded by flow cytometry analysis.
As shown in Fig. 5A, the LPS-activated MCF-7 cells showed around
20% increase in the luminescence intensity, corresponding to the
elevated expression of intracellular H2S in the inflammatory state.
Administering dexamethasone (an anti-inflammation drug) during
LPS-activation decreased the intracellular MFI (Fig. 5B), suggesting
the H2S expression is inhibited. Moreover, corresponding decrease
of H2S expression also showed a dexamethasone concentration
dependence, implying the efficiency of dexamethasone in the
treatment of inflammation of cancer cells.

4. Conclusions

In conclusion, a new responsive luminescence nanosensor was
developed for ratiometric luminescence detection of H2S in
aqueous solution and cells. The nanosensors were easily prepared
by doping FITC to mesoporous silica nanoparticles and
immobilizing Ru(II) complexes, [Ru(bpy)2(bpy-DPA)]2þ in the
pores. The nanoparticles showed excellent colloid stability and dual
emissions in aqueous solution. Adding Cu2þ then quenched the red
luminescence and the in-situ generated nanosensors
(RueCu@FITC-MSN) enabled ratiometric luminescence detection
of H2S in aqueous solution using FITC as the reference. The cyto-
toxicity was limited and the cellular uptake pathway seemed to
involve cell membrane receptors and microtubules-mediated
endocytosis. The ratiometric luminescence imaging of H2S was
demonstrated, followed by the flow cytometry analysis of H2S
expression in inflammatory breast cancer cells and subsequent
inhibition of H2S generation upon the anti-inflammatory treat-
ment. The present work provides a new approach for rapid and
effective detection of H2S.
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General information 

General procedure for spectroscopic analysis 

Stock solution of Ru@FITC-MSN (1 mg/mL) and Ru-Cu@FITC-MSN (1 mg/mL) were prepared 

in water. Before spectroscopic measurements, the solution was freshly prepared by diluting the stock 

solution to HEPES buffer (pH 7.4) to the corresponding solution at the concentration of 50 µg/mL. 

The solution of H2S (NaHS as the donor) was then added to the solution (total volume 3.0 mL), and 

then the solution was mixed at R.T. for 5 min before the spectroscopic analysis. Excitation and 

emission slits are 5 nm.  

Preparation of reactive oxygen species (ROS) and ions 

Solutions of a series of anions (20 mM) were freshly prepared by dissolving corresponding chemicals 

in deionized water. A stock solution of HOCl was prepared by dilution of the commercial sodium 

hypochlorite solution and stored according to the previous literatures [1]. The concentration of HOCl 

was determined by using its molar extinction coefficient of 391 M−1cm−1 at 292 nm before use [2]. 

Hydroxyl radical (·OH) was generated in the Fenton system from ferrous ammonium sulfate and 

hydrogen peroxide [3]. Superoxide anion radical (O2
-) was generated from the xanthine-xanthine 

oxidase system [4]. ONOO- was donated by 3-morpholinosydnonimine (SIN-1) [5]. Nitric oxide was 

generated by 1-hydroxy-2-oxo-3-(3-aminopropyl)-3-methyl-1-triazene (NOC-13) [6]. Hydrogen 

peroxide (H2O2) was diluted immediately from a stabilized 30% solution, and was assayed using its 

molar absorption coefficient of 43.6 M−1cm−1 at 240 nm [7]. Anhydrous sodium hydrosulfide (NaHS) 

was used as the donor of H2S [8]. The NaHS water solution was freshly prepared and used for all 

experiments. 

Cell line and cell culture 

Human breast cancer cell line, MCF-7 (ATCC® HTB-22™) was obtained from American Type Cell 

Collection. MCF-7 cells were cultured in DMEM, supplemented with 10% FBS, 1% penicillin, 1% 

streptomycin sulfate in a humidified 5% CO2/95% air incubator at 37 oC. The growth medium was 
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changed every two days. MCF-7 cells were routinely subcultured with trypsin-EDTA solution and 

growth to 80% confluence prior to experiments.  

Cell viability assays 

The cytotoxicity of Ru@FITC-MSN toward MCF-7 cells was examined by MTT assay method. This 

assay involves the reduction of a yellow tetrazolium salt, [3-(4,5-dimethylthazol-2-yl)-2,5-

diphenyltetrazolium bromide] tetrazolium to insoluble formazan crystals by the metabolic activity of 

live MCF-7 cells. MCF-7 cells were seeded at a density of 5 × 104 cells/mL in a 96-well micro-assay 

culture plate. After growth at 37 oC in a 5% CO2 incubator for 24 h, the culture medium was replaced 

with the freshly prepared medium containing different concentrations of Ru@FITC-MSN (0, 5, 10, 

20, 40 and 100 µg/mL). The group with the addition of culture medium only was employed as the 

control, and the wells containing culture media without cells were used as blanks. After incubation at 

37 oC in a 5% CO2 incubator for 24 h, cell culture medium was removed and cells were carefully 

washed three times with PBS. Then, the MTT solution in PBS (100 μL, 0.5 mg/mL) was added to 

each well for further incubation for 4 h. The excess MTT solution was then carefully removed from 

each well, and the formed formazan was dissolved in 100 μL of dimethyl sulfoxide (DMSO). The 

absorbance at 570 nm was measured in an Infinite M200 Pro Microplate Reader. The results from the 

five individual experiments were averaged. The following formula was used to calculate the viability 

of cell growth:  

Vialibity (%) = (mean of absorbance value of treatment group-blank)/(mean absorbance value of 

control-blank) × 100.  

All of the measurements were performed five times and the values are presented as the mean ± SD.  

Confocal luminescence imaging in cells 

Confocal luminescence imaging of both green channel (FITC channel) and red channel (Ru(II) 

channel) was performed to investigate the capability of nanosensor for sensing of H2S. MCF-7 were 

typically seeded at a density of 3 × 105 cells/mL in a cell culture dish (φ  = 20 mm) for the 
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luminescence microscopic cell imaging. After incubation for 24 h, the culture medium was replaced 

with the freshly prepared medium containing Ru@FITC-MSN (40 µg/mL), and the cells were 

further incubated at 37 °C in a 5% CO2/95% air incubator for 4 h. The excess Ru@FITC-MSN was 

then removed, and the cells were washed with PBS for three times. Then, following experiments were 

designed and performed:  

a) Cells were treated with 20 µM Cu2+ in PBS;  

b) Group (a) cells were washed with PBS for three times and then supplied with 20 µM H2S (NaHS 

as the donor). 

Flow cytometry analysis 

The cellular uptake and the detection of H2S production in live cells were investigated by flow 

cytometry analysis. All of the measurements were performed three times and the values are presented 

as the means ± SD. Details of experiments include:  

a) Concentration-dependent cellular uptake  

MCF-7 cells were seeded into the wells of a six-well cell culture plate at the density of 1 × 105 

cells/mL. After 24 h, the cell culture medium was replaced with the freshly prepared medium 

containing 0, 5, 10, 20, 40, 50, 75, 100 µg/mL Ru@FITC-MSN. The cells were incubated at 37 oC 

for 4 h and then washed with PBS for three times to remove excess Ru@FITC-MSN. Then cells 

were detached and collected for flow cytometry analysis.  

b) Time-dependent cellular uptake  

MCF-7 cells were seeded into the wells of a six-well cell culture plate at the density of 1 × 105 

cells/mL. After 24 h, the cell culture medium was replaced with the freshly prepared medium 

containing 40 µg/mL Ru@FITC-MSN (control group: cell culture medium without Ru@FITC-

MSN was added). The cells were further incubated for 0.5, 1, 2, 4, and 8 h. After washing with PBS 
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for three times, the cells were detached by incubation with 0.25% EDTA-Trypsin and then collected 

by centrifugation.  

c) Cellular internalization pathway 

The cellular uptake pathway of sensor was investigated by flow cytometry analysis after treating with 

different endocytic inhibitors. MCF-7 cells were seeded into a six-well plate at the density of 1 × 105 

cells/mL. After 24 h incubation at 37 oC, cell culture medium was replaced with freshly prepared 

medium containing chloroquine (100 μM), filipin (10 μg/mL), nocodazole (10 μM), colchicine (10 

μM), NH4Cl (10 mM), respectively. Then, Ru@FITC-MSN (40 µg/mL) was added into the medium 

of each well and the cells were further incubated for another 4 h. After washing with PBS for three 

times to remove excess Ru@FITC-MSN, the cells were detached by incubation with 0.25% EDTA-

trypsin and collected by centrifugation.  

For cells incubation at reduced temperature, the MCF-7 cells were keep at 4 oC for 30 min, and the 

cell culture medium was replaced with cold fresh medium containing Ru@FITC-MSN (40 µg/mL)  

followed by incubation at 4 oC for another 4 h. After washing with cold PBS for three times to remove 

excess Ru@FITC-MSN, the cells were detached by incubation with 0.25% EDTA-trypsin and 

collected by centrifugation for flow cytometry analysis. 

d) Quantification of H2S generation in MCF-7 cells 

MCF-7 were seeded into 6-well plate at the density of 5 × 105 cells/well. After 24 h incubation at 37 

oC, three group experiments were designed and performed:  

i) Cells were further incubated at 37 oC for another 7 h a as the blank;  

ii) Cells were incubated at 37 oC for 4 h and then incubated with Ru@FITC-MSN (40 µg/mL) for 

another 4 h followed by treatment with 20 µM Cu2+;  

iii) Group (ii) cells were treated with LPS (10 ng/mL) for 4 h;  
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iv) Group (ii) cells were incubated with LPS (10 ng/mL) and dexamethasone at different 

concentrations (0, 1, 10, 100, 103, and 104 µM). 

The cells of each group were washed with PBS for three times and then detached and collected for 

flow cytometry analysis.   
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Figure S1. FTIR of Ru(II) complex, FITC-MSN and Ru@FITC-MSN. 

 

Figure S2. Thermogravimetric analysis of FITC-MSN and Ru@FITC-MSN.  
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Figure S3. Stability of FITC-MSN and Ru@FITC-MSN in aqueous solution.  

 

Figure S4. Emission spectra of Ru@FITC-MSN (red line), in-situ generated Ru-Cu@FITC-MSN in 

the absence (black line) and presence of H2S (blue line).  
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Figure S5. Ratiometric emission intensity changes (I520/I600) of Ru@FITC-MSN in the presence of 

Cu2+ at concentrations of 0, 0.2, 0.4, 0.8, 1, 1.5, 2, 4, 6, 8, and 10 µM.  

 

Figure S6. Linearity of ratiometric emission intensity changes (I520/I600) against the concentration of 

Cu2+.  



S10 
 

 

Figure S7. Ratiometric changes of luminescence emission intensity (I600/I520) upon H2S addition to 

Ru-Cu@FITC-MSN.  

 

 

Figure S8. Time course luminescence intensity (λex = 450 nm, λem = 600 nm) changes of Ru@FITC-MSN 

response to Cu2+ addition and in-situ produced Ru-Cu@FITC-MSN response to H2S. 



S11 
 

 

Figure S9. Flow cytometry analysis of cellular uptake rate of Ru@FITC-MSN at different 

concentration (0, 5, 10, 20, 40, 50, 75, and 100 µg/mL) in 4 h incubation.  

 

 

Figure S10. Flow cytometry analysis of cellular uptake rate of Ru@FITC-MSN (40 µg/mL) in 

different time incubation (0, 0.5, 1, 2, 4, and 8 h).  
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Figure S11. Luminescence imaging of H2S in MCF-7 cells. The MCF-7 cells were incubated with 

Ru-Cu@FITC-MSN (40 µg/mL) (A) for 4 h, and then treated with H2S (B) for another 30 min. Scale 

bar, 50 µm.  

 

Table S1. Summary and comparison of the proposed protocol with other reported methods for H2S 

detection 

Method Name λex/λem 

(nm) 

LoD LoQ Linearity range Response time Biological applications Ref. 

OFF-ON  Ru-MDB 450/612 45 nM - 0-80 µM 50 min H2S imaging in cells, zebrafish and mice [9] 

TPE-NP 405/480 12.8 nM - 0.1 µM-0.8 mM Instant H2S imaging in cells and C.elegans [10] 

1 405/455 0.28 µM - 0-100 µM Overnight H2S imaging in cells [11] 

NCQ 423/490 0.52 µM - 0-8 µM 15 min H2S imaging in cells [12] 

MeRho-

Az 

476/516 86 nM - 0-15 µM > 120 min H2S imaging in zebrafish [8] 

Mito-VS 370/510 0.17 µM - 0.5-100 µM 30 min H2S imaging in cells [13] 

7b 350/450 0.61 µM - 0-150 µM 40 min H2S imaging in cells [14] 

DT-Gal 426/- 0.78 µM - 0-90 µM - H2S imaging in cells [15] 

SulpHens

or 

530/555 0.5 µM - 0-10 µM > 60 min H2S imaging in cells [16] 

P3 375/- 50 nM - 0.1-50 µM 10 min H2S imaging in cells [17] 

ON-OFF 1 470/515 35 nM - < 35 µM 20 min H2S imaging in cells [18] 

3a 560/750 14.7 µM - 1.3-1.8 µM - - [19] 

Ratiometric  -

/452,65

7 

7 nM - 0-2 µM 15 min - [20] 

Ru-

Cu@FIT

C-MSN 

450/520

, 600 

0.36 µM 1.21 

µM 

0-4 µM < 5 s H2S imaging and flow cytometry analysis in 

inflammatory cancer cells and tracking 

cancer cell treatment 

This 

work 
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